Freezing, Melting and Shrinkage of Ice Cream

Richard W Hartel L Gallagher CJ Wicks S VanWees Dept Food Science University of Wisconsin Madison, WI USA

Funding: USDA, NDC

Ice Cream Processing

Scraped Surface Freezer (SSF) Development of Ice Phase

- Formation of ice crystals
 - Scraping of slush off wall of freezer; mixing of slush in center of barrel; ripening and growth to form ice crystal size distribution

Experimental Design

How long after start-up does it take the freezing process to stabilize?

Theoretical Residence Times (s)

Overrun		50% OR	75% OR			100% OR
Throughput Rate		300 L/h	200 L/h	300 L/h	400 L/h	300 L/h
~	Solid	81	141	94	71	108
Assembly	Multi + Solid	104	181	121	91	138
	Standard + Solid	110	193	129	96	147
her	Multi + Wing	160	281	187	140	214
Dasł	Standard + Wing	167	291	194	146	222

Sampling Frequency

- Every 1 min for the first 20 min
 - Hardened only
- Every 6 min for 78 min
 - Draw and hardened

<u>Measurements</u>

- Draw Temperature
- "Viscosity"
- Overrun
- Microstructure
 - Ice
 - Air
 - Fat

Processing Parameters after Start-up

"Viscosity" = torque on dasher motor as the percentage of its total capacity

Processing Parameters after Start-up

Microstructural Attributes after Start-up

Ice Cream at a Structural Level

- Ice crystals
 - Provide cooling effect and hardness
- Air cells
 - Reduce density
- Partially-coalesced fat globule network
 - Affects melt-down rate and hardness of ice cream
- Proteins and hydrocolloids – Network in serum phase
- Serum phase
 - Dissolved sugars, minerals, proteins, etc.
 - Some liquid even at very low temperature

"No-Melt" Ice Cream

- Periodical uproar about ice cream that doesn't "melt"
- Of course it melts, it just doesn't collapse because of the structures

Ice Cream Melting

- Not all ice creams are created equal or melt in the same way
- Drip-through test slabs on mesh, measure drip through weight and height change

Which is better? That's up to you and what the manufacturer wants

Structures and Melt-Down

No-Melt Ice Cream?

- Japanese "no-melt" ice cream
 - Strawberry extract added
 - (juice concentrate, citric acid & pectin?)
- After 2 hours, all the ice is melted, these ice creams just don't collapse

"no-collapse" ice cream

- Must be related to the structures
 - Fat globules, protein

After 30 mins

"Polyphenol liquid has properties to make it difficult for water and oil to separate so that a popsicle containing it will be able to retain the original shape of the cream for a longer time than usual and be hard to melt" Tomihisa Ota

Tomihisa Ota Professor Emeriti

Professor Emeritus of Pharmacy at Kanazawa University, Co-Developer of Ice Cream

Bringing delight by investigating a no-melt ice cream

June 10, 2024 | By Elise Mahon

https://www.youtube.com/watch?v=4fRVqG96vFM&t=2s

Evaluate tannic acid in frozen dessert systems with different fat/protein content.

Ice cream formulations

	fat (%)	protein (%)	TA (%)
	12	3	0
	12	3	0.5
Paca	12	3	1
Dase	12	3	1.5
	12	3	2
	12	3	2.5
Higher	12	5	0
Protein	12	5	2.5
Higher	15	3	0
Fat	15	3	2.5

Methods:

- Mix Preparation with polyphenol
- Batch freezing
- Fat globule Size Distribution
- Microscope Images
- pH of mix
- Overrun
- Rheology
- Melting Rate
- Ice Recrystallization

Melting Profiles

for <u>Base</u> (12% fat / 3% protein) ice creams with increasing TA%

Melting Profiles

Tannic Acid in IC Mix: Microscope Images

2.5% TA

Melting Ice Cream

- None are really what could be called "no melt or collapse" ice creams
- Some effect of tannic acid at 2.5%, but not complete stopping of melt-down

Ice Recrystallization

- TA inhibits ice recrystallization in storage
 - Not clear how the aggregated structures influence ice crystal growth?

Formula Type	TA (%)	Week 0	Week 2	Week 4
	0	36.4±3.7 ^{DEFGH}	53.2±5.7 ^{ABCDE}	67.9±9.4 ^A
	0.5	31.6±0.0 ^{FGH}	51.7±0.0 ^{ABCDEFG}	58.3±0.0 ^{AB}
Standard	1.5	33.8±4.9 ^{EFGH}	42.9±1.4 ^{BCDEFGH}	52.0±2.1 ^{ABCDEF}
	2.5	29.8±2.2 ^H	41.1±2.5 ^{BCDEFGH}	42.7±0.7 ^{BCDEFGH}
Higher	0	33.9±0.9 ^{EFGH}	56.4±4.5 ^{ABCD}	71.1±7.0 ^A
Protein	2.5	31.3±3.1 ^{FGH}	32.7±0.6 ^{EFGH}	36.8±3.3 ^{CDEFGH}
Highor Est	0	30.6±3.0 ^{GH}	57.9±4.5 ^{ABC}	67.6±3.3 ^A
	2.5	32.5±4.0 ^{EFGH}	34.8±0.2 ^{EFGH}	38.7±0.7 ^{BCDEFGH}

Phenolic Extracts

• Polyphenol extracts (high phenolic %) shown to decrease melting rate in previous studies

<u>~ 1 '1' 1 1</u>

• Could these extracts replace stabilizers in ice cream?

					Stabilizer blend
			With Stabilizer	Without Stabilizer	locust bean gum, guar gum, and
Each extract has at least		Control	Control + Stabilizer	Control + No Stabilizer	carrageenan
85% Polyphenols	Grape	Grapeseed	Grapeseed + Stabilizer	Grapeseed + No Stabilizer	
		Green Tea	Green Tea + Stabilizer	Green Tea + No Stabilizer	

Extract	Total polyphenols in extract (%)	Total PAC in extract (%)	Total polyphenols in ice cream (%)	PAC content in ice cream (%)	Type of PP
green tea extract	97.6 ± 8.0	38.7 ± 7.4	2.9	1.2	different between
grape seed extract	80.7 ± 7.0	13.8 ± 0.3	2.4	0.4	samples

Ice Recrystallization

• Both extracts inhibit ice recrystallization in storage

Extract	Stabilizer (%)	Week 0	Week 4
Control	0	36.2±0.2 ^B	86.4±14 ^A
Control	0.2	39.5±4.3 ^B	82.5±13 ^A
Cremented	0	34.2±1.7 ^B	33.2±3.8 ^B
Grapeseed	0.2	31.1±3.2 ^B	35.7±0.1 ^B
о. т.	0	32.7±0.2 ^B	34.9±0.9 ^B
Green Tea	0.2	32.9±1.3 ^B	37.6±0.7 ^B

Again, mechanism for inhibition effect is unknown.

Fruit Extract/Sources in Ice Cream

• Some previous studies have shown that fruit extracts can inhibit melting, as in the Japanese "no melt" popsicles

Loo Croom		Experimental	l Design:	
<u>Formula</u>		% Addition to 1	Ice Cream	
15% fat 3% protein	Fruits	Standardized extract	Freeze-dried powder	Juice concentrate
Extract Phenolic Content	Strawberry	3.5%	3.5%	20%
 Strawberry = ~1% Blueberry = 30% 	Blueberry	3.5%	3.5%	
• Cranberry = 15%	Cranberry	3.5%		

Fruit Extract/Sources in Ice Cream

- Lower polyphenol (and proanthocyanadin, PCA) content, below the threshold value found in our previous studies
 - May contain fibers and other compounds

Crude Extract	Total polyphenols in source (%)	Total PAC in source (%)	Total polyphenols in ice cream (%)	PAC content in ice cream (%)
Blueberry extract	39±1.3	5.3±0.4	1.4	0.2
Cranberry extract	36±0.2	3.4±0.3	1.2	0.1
Strawberry freeze-dried powder	0.3±0.01	0.02±0.0	0.01	0.001
Blueberry freeze-dried powder	0.8±0.06	0.06±0.001	0.03	0.002
Strawberry juice concentrate	1.1±0.1	0.042±0.001	0.04	0.001

Melting Profiles

Summary of Polyphenols in Ice Cream

- Although it seems the effects of polyphenols relate to the proteinmediated fat globule aggregates, the mechanisms are not so clear
 - Concentration effect
 - pH effect
 - Interactions with other components (e.g., stabilizers)
 - Specific type of polyphenol is probably important

- Another focus of this study showed that effect of viscosity and proteinaggregated fat globules was mostly dependent on degree of polymerization of the PP – longer chains resulted in stronger bonding with proteins
- How do PP affect ice crystal growth?

Shrinkage in Ice Cream

- Texture defect in the air phase of frozen desserts
- Product no longer fills the volume of the container
- Destabilization and collapse of the frozen foam

Dr. Sam VanWees Funding: Dairy Management Inc.

Proteins in Frozen Desserts

- Functionality
 - Emulsification
 - Foaming
 - Water-holding capacity
- Structure-function relationships within highly complex emulsions and foams
- Storage stability, shrinkage, and air interface viscoelasticity

How do interfacial proteins respond to expansion and contraction? Could this correspond to shrinkage?

Walstra et al. (2006)

Oscillatory Dilatational Rheology

Dilatational modulus $E = \frac{\Delta \gamma}{\Delta \ln A}$ $E' = E \cos \delta$ $E'' = E \sin \delta$ $E(\omega) = E'(\omega) + iE''(\omega)$

What air interfacial properties are stabilized by dairy proteins?
 Does protein concentration affect rheological properties?
 How might different structure-function relationships impact air cell stability?

Open – 4% protein Closed – 8% protein MPC creates a much firmer interface than NaCN, with WPI between

Large Angle Oscillatory Dilation

• No obvious asymmetry, which would be reflective of stress/strain hardening, but these are high concentrations of protein an effects might not show up

Evaluate Ice Creams

- Protein source
 - Milk protein concentrate (MPC)
 - Sodium caseinate (NaCN)
 - Whey protein isolate (WPI)
- Emulsifier addition
 - 0.0%; 0.15% MDG
- Overrun
 - 100%; 150%
- Storage time
 - 0, 2, 4, 6 weeks

Fat	12.0%
MSNF	13.3%
- Protein	6.0%
- Lactose	6.3%
Milk minerals	1.0%
Sucrose	14.5%
Stabilizer	0.2%
MDG	0.0 or 0.15%
Total solids	40%

Mix Prop	oerties
-----------------	---------

Air Cell Coarsening

- Coalescence, disproportionation, drainage
- Matrix phase properties; interfacial properties

Air Cell Accretion

2nd day at -15°C

Chang and Hartel (2002)

NaCN, 0.15% MDG, 150% OR, 2 weeks

Shrinkage

Protein	MDG	OR	Storage time (weeks)					
source	(%)	(%)	0	2	4	6		
MDC	0.0	100	NS	2.82 ± 2.10 a, A, x	1.83 ± 3.50 a, A, x	$0.84 \pm 3.50~^{a,A,x}$		
	0.0	150	NS	$3.56\pm1.05~^{\text{a, A, x}}$	1.58 ± 2.45 a, A, x	$0.59 \pm 1.05~^{a,A,x}$		
MITC	0.15	100	NS	3.06 ± 3.85 a, A, x	2.82 ± 2.10 a, A, x	3.61 ± 0.979 a, A, x		
	0.13	150	NS	2.57 ± 0.350 a, A, x	2.07 ± 1.05 a, A, x	$5.54 \pm 0.350^{\text{ a, B, x}}$		
	0.0	100	NS	$2.92 \pm 0.559~^{a,A,x}$	0.84 ± 3.50 a, A, x	2.82 ± 2.10 a, A, x		
NaCN	0.0	150	NS	$5.09 \pm 0.280^{\text{ a, A, x}}$	1.09 ± 2.45 a, A, x	3.66 ± 1.19 a, A, x		
nach	0.15	100	NS	1.21 ± 0.168 a, A, x	0.34 ± 1.40 ^a, A, x	1.18 ± 1.05 a, A, x		
		150	NS	14.6 ± 3.64 b, B, y	$14.7 \pm 2.10^{\text{b}, \text{B}, \text{y}}$	32.0 ± 1.40 b, B, y		
	0.0	100	NS	$0.59\pm3.15~^{\text{a, A, x}}$	2.32 ± 1.40 a, A, x	1.53 ± 3.08 a, A, x		
WPI	0.0	150	NS	1.18 ± 0.210 a, A, x	6.28 ± 1.40 ^{a, A, x}	$4.30 \pm 1.40 \ ^{a,A,x}$		
	0.15	100	NS	$0.59\pm1.05~^{\text{a, A, x}}$	2.32 ± 1.40 a, A, x	1.53 ± 0.280 a, A, x		
	0.13	150	NS	3.56 ± 1.05 a, A, x	5.09 ± 0.280 a, A, x	3.31 ± 2.80 a, A, x		
a, b, c 🗕 🛛	a, b, c = by protoin source: A, B = by MDC addition: X, Y = by overrup NS = po shrinkage							

by MDG addition; by protein source, υy enun

= no snnnkage 112

Understanding Shrinkage

- Air phase destabilization is thermodynamically favorable, the best we can do is kinetically inhibit it
- Dependent upon:
 - 1. Composition and rheological properties of the air interface
 - 2. Composition and rheological properties of the matrix
 - 3. Ability of matrix to withstand temperatures and/or pressure changes.

The problem of shrinkage remains an issue

Ice cream is complex!

Thanks to all the students who have contributed to these studies Funding: USDA NIFA (WIS03038 GRANT 12905866); NDC