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• Frozen dessert no longer fills the volume of the container

• Textural defect in the air phase: collapse of the frozen foam

• Studied extensively from 1940-1955
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Shrinkage
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• Ingredients
• Fat, serum ingredients 

• Processing factors
• Freezing, hardening

• Post-production factors
• Packaging, transportation, storage

• Measurement of shrinkage
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What we know about shrinkage

Nickerson and Tarassuk (1955)
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Measurement



• Volume displacement
• Low temperature to prevent melting

• Solvent (kerosene, antifreeze, water)

• Distance measurement 
(as change in height)

• Volume calculation
• L × W × H
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Measurement

Dubey and White (1996, 1997)
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Effects of Ingredients



• Fat

• Sweeteners

• Stabilizers

• Protein

• Emulsifiers

• Water
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Effects of ingredients

Ice crystals

Air cells

Partially-coalesced fat

“Free” fat globules

Serum phase

Casein micelle



• Higher sugar content is more likely to 
cause shrinkage 

• Dextrose, corn syrup, honey, wheat 
syrups all increased shrinkage

• Lower freezing point decreases 
serum phase viscosity and promotes 
air cell destabilization

• Few historical studies on non-
nutritive sweeteners or sugar 
alcohols
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Sweeteners

Lanier et al. (2013)



• Early research is conflicting 
• Some say it has no effect, and some say 

it increases shrinkage 

• Dubey and White (1996): study of 5 common stabilizers
• CMC had most, LBG (w/ CMC, carrageenan, or alone) had least

• Stabilizers promote stable foams
• Increase serum viscosity, some are surface active

• Preventing ice recrystallization may promote foam stability

• Be wary of protein/hydrocolloid phase incompatibility
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Stabilizers Serum ingredients: 
• Structure water
• Affect viscosity
• Influence protein structure

Serum ingredients: 
• Structure water
• Affect bulk viscosity
• Influence protein structure

Locust bean gum



• Conflicting results in early studies

• Egg yolk increased shrinkage

• Effects on fat phase 
• Prevent shrinkage because they promote a strong fat network

• Partially-coalesced fat may adsorb to the air interface and provide physical barrier to 
air migration or channeling

• LMWS also shown to prevent shrinkage in low-fat products (Dubey and 
White 1996)

• Surface activity important for foam stability
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Low molecular weight surfactants Serum ingredients: 
• Structure water
• Affect viscosity
• Influence protein structure



• Whey protein in bulk and at interface 
influences shrinkage

• Whey ingredients may reduce shrinkage, 
but not always
• Undenatured whey proteins reduced shrinkage
• Thermal or chemical denaturation of whey proteins 

increased shrinkage

• Caseinates decreased shrinkage

• Hydrolyzed casein increased shrinkage

• Calcium may enhance shrinkage because it 
destabilizes casein
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Protein

Lam and Nickerson (2013)



• Protein-polysaccharide thermodynamic incompatibility

• Low temperature instability
• Coagulation or cryogelation

• Peptides may stabilize foams and prevent shrinkage

• High protein content is linked to shrinkage
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Protein

Duquenne et al. (2016)



14

Effects of Processing



• High pasteurization T showed mixed results

• High homogenization P increases shrinkage
• Effects on fat and protein structures

• Aging 
• Change in composition of fat globule membrane

• Hydration of proteins
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Mix processing

Goff (1997)



• Fine microstructure increased likelihood 
of shrinkage
• More interfaces = more thermodynamic instability

• Lucky timing: mass production
• Continuous freezing

• Novel packaging

• Transportation and production

• Storage at home
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Freezing



• Continuous freezing promoted shrinkage
• Fine microstructure
• Pressure drop

• Higher overrun promotes shrinkage
• Thinner air cell lamellae
• More instability of discrete cells
• Despite other microstructural elements, more prone 

to foam collapse

• Faster hardening decreases channeling

• Soft-serve, gelato, other unhardened: rarely 
shrink because product melts quickly and is 
consumed immediately
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Freezing

Breyers Ice Cream (1948)
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Post-production effects



• Appearance of shrinkage defect correlates with 
introduction of wide use of paper containers 

• Gas diffusion: Unlined paper containers had most 
shrinkage. Treatment with paraffin, aluminum foil, 
other gas barriers reduced shrinkage.

• Adhesive force between product and container: 
paraffin coating on interior prevented shrinkage, 
but exterior had no affect

• Study of ice cream removed from container 
(Hankinson and Dahle, 1944): no volume lost, but 
samples collapsed under their own weight 

• Best prevention practices: limit gas diffusion (to 
environment)
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Packaging



• The single largest cause of all textural defects, including shrinkage
• Ice recrystallization

• Air cells grow, experience disproportionation and coalescence during 
storage (Chang and Hartel, 2002) 

• Melt/refreeze recrystallization
• Affects chemistry of serum phase, and can destabilize air

• Melting: drainage of watery lamellae between air cells, accelerated gas 
diffusion, hydration of proteins

• Refreeze: Ice crystal growth could puncture air cells, protein hydration
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Temperature fluctuations



• Originally thought to be one of the drivers of modern shrinkage: 
transportation over mountains

• Still likely to be a culprit especially once it reaches consumers

• Ideal gas law: PV=nRT

• Subjecting frozen desserts to vacuum 
causes shrinkage
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Pressure changes



22

Frozen desserts as a frozen foam



• Thermodynamically unstable, 
but kinetically stable at low T

• Liquid/liquid interfaces: 
Oil/water, oil/air

• Solid/liquid interfaces: 
water/ice, fat/oil

• Liquid/gas interfaces: 
oil/air, water/air

23

A multiphase system of interfaces

Ice crystals

Air cells

Partially-coalesced fat

“Free” fat globules

Serum phase

Casein micelle



• Air phase dispersed in a continuous, 
semi-frozen aqueous serum

• Foam destabilization 
• Drainage

• Disproportionation (Ostwald ripening)

• Coalescence 

• Destabilization of foam → collapse
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Frozen desserts as a frozen foam

Germain and Aguilera (1999)



• Proteins: viscoelastic film
• Steric, electrostatic, mechanical 

stabilization

• Thick coating

• LMWS: Gibbs-Marangoni mechanism
• Thin coating

• Fluid interface

• Low interfacial tension

• Competitive displacement
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Foam stabilization

A

A

Whey protein

LMWS



• Proteins: viscoelastic film
• Steric, electrostatic, mechanical 

stabilization

• Thick coating

• LMWS: Gibbs-Marangoni mechanism
• Thin coating

• Fluid interface

• Low interfacial tension

• Competitive displacement
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Foam stabilization

Protein LMWS

Orogenic Displacement
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• (In)stability of air phase

• Air/water interface
• Protein, LMWS, fat networks, fat globules, mixed 

surfactant system..?

• Thickness, elasticity, stability of interface

• Serum phase
• Viscosity, osmotic pressure, etc.

• Ability to maintain the dispersed air phase
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Shrinkage mechanisms in theory

Jiang et al. (2019)



• Hankinson and Dahle (1944)
• 3 forces contribute: gravity, air volume changes from T fluctuations, P 

change created by change in volume as water freezes to ice
• Sinking of product due to gravity and expansion at air interface, but 

doesn’t fully explain shrinkage related to coarsening of air cells

• Turan and Bee (1999)
• Shrinkage is two-stage: first air cells form channels, then matrix collapses 

and loses volume
• Channels form by disproportionation or coalescence to create a sponge matrix, 

which collapses due to gravity

• Channels promote gas diffusion with exterior but are not affected by 
external pressure changes
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Shrinkage mechanisms in history



• 2D measurements
• Optical (light) microscopy

• Cryo-EM

• 3D measurements
• X-ray tomography

• Pressure responses
• Transducers 
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Visualizing air cell instability

Guo et al. (2017)

Chang and Hartel (2002)
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Air cell instability

Chang and Hartel (2002)
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Air cell instability

Guo et al. (2018)
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Air cell instability

Pinzer et al. (2012)



• Cannot visualize well – 2D optical 
microscopes and cryo-EM don’t 
capture fully

• X-ray tomography has shown 
evidence of channel formation

• Channeled air cells do not 
respond to external pressure 
changes

• Channeling does not always lead 
to shrinkage
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Channeling

Guo et al. (2017)



• Partial coalescence
• Balance of internal pressure and interfacial tension

• Surfactant location and activity

• Ice recrystallization
• Ice crystal growth mechanisms are similar to those of air phase 

destabilization – coalescence, disproportionation

• Some evidence that the same peptides that can prevent recrystallization 
can prevent shrinkage (Cox et al. 2009, Duquenne et al. 2016)

• Melting behavior
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Modeling changes in frozen foams

Pi

γ



• High protein, high sugar, high overrun promote shrinkage

• Most important ingredient: protein

• Reduce temperature (and pressure) fluctuations

• Volume displacement measurement technique recommended

• No clear mechanism 

• Study frozen desserts as frozen foams

• Utilize other measurable changes during storage (especially ice 
recrystallization) to better understand the air phase stability
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Summary
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